PROCESS | UTILITES [Documentation]

www.ProcessUtilities.com

ProcessUtilities is the ultimate add-in for chemical engineers. Its thirty-plus custom functions and macros are designed specifically to streamline engineering in Excel. This document describes its function, but the user is strongly encouraged to visit <u>www.ProcessUtilities.com</u> to download the latest examples and access tutorials.

Functions

Ribbon interface, macros, & shortcuts

ProcessUtilities Functions

PRIMARY	CONVERSION	FUNCTIONS

<u>Conv</u>	Converts a value from one unit of measure to another.
<u>TConv</u>	Converts a value from one temperature scale to another.
<u>PConv</u>	Converts a value from one pressure scale to another.
<u>ConvFactor</u>	Evaluates a conversion factor, i.e. ConvFactor("gal/ft3") returns the number of gallons in one cubic foot.

DIMENSIONAL ANALYSIS FUNCTIONS		
<u>BaseUnits</u>	Returns the metric base units of a unit string.	
<u>UnitMath</u>	Returns the result of multiplying or dividing unit strings.	
<u>Dimensionless</u>	Uses dimensional analysis to construct and calculate the value of a dimensionless number based on the arguments specified.	
Dimensional	Uses dimensional analysis to construct and calculate a result with the specified units.	
<u>MassMolesVolume</u>	Converts between moles/standard volume, mass, volume, density, molecular weight, and molar volume.	
<u>IdealGas</u>	Uses up to five specified parameters in the ideal gas equation to calculate the parameter with the result units specified, i.e. temperature, pressure, moles, volume, mass, molecular weight, molar volume, molar density, and mass density.	

MOLECULAR FORMULA FUNCTIONS

MW	Returns the molecular weight corresponding to a molecular formula.
<u>CountAtom</u>	Returns the number of atoms of a specified element in a molecular formula, or an array of chemical formulas.
MassToMoleComposition	Convert a composition from mass fraction to mole fraction based on chemical formulas.
MolesToMassComposition	Convert a composition from mole fraction to mass fraction based on chemical formulas.

ENGINEERING REFERENCE FUNCTIONS		
<u>Constant</u>	Returns the value of the specified physical constant in the specified units.	
<u>STP</u>	Returns the value of temperature, pressure, ideal molar volume, or ideal molar density at standard conditions, based on the units specified.	
SaturatedSteam	Returns temperature, pressure, specific volume, internal energy, enthalpy, or entropy for saturated steam, based another of these properties.	
SuperheatedSteam	Returns specific volume, internal energy, enthalpy, or entropy for super-heated steam, based on temperature and pressure.	
Ζ	Returns the generalized compressibility factor for a gas based on reduced temperature and pressure.	
<u>PipeSize</u>	Returns inner diameter, outer diameter or internal area of a pipe of the specified size and schedule, in the specified units.	
<u>Roughness</u>	Returns the absolute surface roughness of the specified material, for use in pressure drop calculations.	
EquivalentLength	Returns the length of pipe that would produce equivalent pressure drop to various standard pipe fittings.	

PIPE FLOW & PRESSURE DROP FUNCTIONS

PressureDrop	Solves the Darcy-Weisbach equation to calculate head loss or pressure drop due to friction.
<u>FlowRegime</u>	Returns the flow regime of liquid flowing in a pipe based on Reynolds number.
<u>PipeFlow</u>	Converts between flow rate and velocity in a pipe.
<u>HeadPressure</u>	Converts between pressure drop and head pressure.

<u>CvLiquid</u>	Liquid flow coefficient calculator. Calculates whichever value is not specified: Cv, volumetric flow rate, or pressure drop.
CvGas Subcritical	Gas flow coefficient calculator for subcritical flow (pressure ratio > 0.5). Calculates whichever value is not specified: Cv, standard flow rate/mole flow rate, or outlet pressure.
<u>CvGas Critical</u>	Gas flow coefficient calculator for critical flow (pressure ratio < 0.5). Calculates whichever value is not specified: Cv, standard flow rate, or inlet pressure.
PackedBedPressureDrop	Uses the Ergun Equation to estimate pressure drop through a packed bed.

OTHER ENGINEERING FUNCTIONS		
PumpPower	Calculates pump fluid power based on any appropriate combination of volume flow rate, mass flow rate, density, head, and pressure drop.	
<u>CompressorPower</u>	Calculates compressor power based on inlet pressure, outlet pressure, and either volume flow rate, or inlet temperature and molar flow rate. Optionally, heat capacity ratio can also be specified.	
LMTD	Returns the log mean temperature difference.	
QuadraticFormula	Uses the quadratic formula to find roots of quadratic equations of the form $0=a*x^2+b*x+c$.	

Conv function

Description

The **Conv** function converts a value from one unit of measure to another. It works with more than 150 different units, as well as combinations of these units.

Syntax

Conv(Value, Units, NewUnits)

The **Conv** function syntax has the following arguments:

- Value Value to convert
- Units Units for 'Value'
- NewUnits Units for the result

Conv accepts the following text values (in quotation marks or as cell references) for Units and NewUnits. Combinations of these units are also acceptable, for example, 'ft3/s' or 'L-atm/(mol-K)'. Units marked with an '*' can be used with metric prefixes. See the 'Remarks' section below for more information and examples.

Mass	
atomic mass unit	u
grain	gr
gram *	g
ounce	OZ
pound	lb
slug	slug
short ton	ton
metric ton	t
Time	
second *	S
minute	min
hour	h
day	d
week	wk
month	mon
year	yr
Quantity	
gram mole *	mol, gmol
elementary entities	ee
kilogram mole	kgmol
pound mole	lbmol
standard cubic foot	scf, SCF
standard cubic meter	scm, SCM
hundred standard cubic feet	ccf, CCF
thousand standard cubic feet	mcf, Mcf, MCF
million standard cubic feet	mmcf, MMcf, MMCF
billion standard cubic feet	Bcf, BCF
standard liter	sL
standard cubic centimeter	scc, SCC
Quantity flow	
standard liter per minute	sLpm, SLPM
standard liter per hour	sLph
standard liter per day	sLpd

standard cubic centimeter per minute	sccm, SCCM
standard cubic feet per minute	scfm, SCFM
standard cubic feet per hour	scfh, SCFH
standard cubic feet per day	scfd, SCFD
thousand standard cubic feet per day	mcfd, Mcfd, MCFD
million standard cubic feet per day	mmcfd, MMcfd, MMCFD
billion standard cubic feet per day	bcfd, Bcfd, BCFD
Temperature	
kelvin	К
degree Celsius	degC
degree Rankine	degR
degree Fahrenheit	degF
Length	
meter *	m
angstrom	ang
mil	mil
inch	in
foot	ft
yard	yd
nautical mile	nmi
mile	mi
fathom	ftm
Speed	
mile per hour	mph
kilometer per hour	kmph
Area	
acre	acre
hectare *	ha
Volume	
liter *	L
ounce	floz
quart	qt
gallon	gal
barrel	bbl
thousand barrels	Mbbl
million barrels	MMbbl
Volume rate	
actual cubic feet per minute	acfm

gallons per minute	gpm
gallons per hour	gph
gallons per day	gpd
Liters per minute	Lpm
Liters per hour	Lph
Liters per day	Lpd
Force	
newton *	Ν
dyne	dyn
pound-force	lbf
kilogram-force	kgf
Energy	
joule *	J
erg	erg
electron volt	eV
calorie	cal
British thermal unit	btu, Btu, BTU
kilocalorie	kcal
therm	thm
ton of refrigeration	TR
thousand British thermal units	MBtu, MBTU, Mbtu
million British thermal unit	MMBtu, MMBTU, MMbtu
Power	
watt *	W
horsepower	hp, Hp, HP
Pressure	
pascal *	Ра
bar	bar
millimeter Hg	mmHg
cmHg	cmHg
torr	torr
foot water	ftH2O
inch water	inH2O
inch Hg	inHg
pound per square inch	psi
meter water	mH2O
kilogram per square centimeter	kgcm2
atmosphere	atm

Kinematic viscosity	
stokes *	St
Dynamic viscosity	
poise *	р
Angle	
radian	rad
degree	deg
turn	rev
Electric potential	
volt *	V
Electrical charge	
coulomb *	С
Current	
ampere *	A
Resistance	
Ohm *	Ohm
Electrical capacitance	
Farad	F
Electrical conductance	
siemens	S
Magnetic flux	
weber	Wb
Magnetic field strength	
Tesla	Т
Inductance	
Henry	Н
Luminous intensity	
candle	cd
Luminous flux	
lumen	lm
Illuminance	
lux	lx
Radioactivity	
Becquerel	Bq
Absorbed dose	
gray	Gy
Equivalent dose	
Sievert	Sv

Catalytic activity	
katal	kat
Frequency	
hertz	Hz
Gas permeability	
barrer	barrer

The following abbreviated unit prefixes can be used with the metric unit marked above marked with an '*'.

Prefix	Multiplier	Abbreviation
tera	1E+12	Т
giga	1E+09	G
mega	1E+06	Μ
kilo	1E+03	k
hecto	1E+02	h
deci	1E-01	d
centi	1E-02	С
milli	1E-03	m
micro	1E-06	u
nano	1E-09	n
pico	1E-12	р
femto	1E-15	f
atto	1E-18	а

Remarks

- Exponents can be entered as digits after a unit, i.e. 'm3' or 'm^3' will be interpreted as cubic meters and can be converted to any other combination of units that has the dimensions of volume.
- Exponents can be integers, decimals or fractions, but they must be positive. Units with negative exponents should be put in the denominator.
- If the input data types are incorrect, the units do not exist, or the dimensions of the units do not match, CONV returns the #VALUE! error value.
- Order of operations is observed in compound units, for example, "J/mol-K" is equivalent to "J-K/mol", not "J/(mol-K)".
- Unit names and prefixes are case-sensitive.
- Differential temperature conversions can be performed by the CONV function. Temperature scale conversions should use the TCONV function, for example converting a measured temperature.
- Pressure unit conversions can be performed by the CONV function, for example converting units for pressure drop. Gauge pressure conversions should use the PCONV function.
- Dashes or asterisks should be used to signify multiplication in compound units, i.e. "N-m" or "N*m"
- A forward slash should be used to signify division in compound units, i.e. "m/s"

Examples

1	1 Ib =Conv(C4,D4,D5) kg	Converts 1 pound to kilograms
2	5 m3 1,321 gal	Converts 5 cubic meters to gallons
3	8.314 J/(mol-K) 0.0299 ft3-psi/(scf-degF)	Converts the ideal gas constant from L/(mol-K) to ft3-psi/(scf-degF)
4	3.2 kg-m/s #VALUE! N	Unit dimensions don't match, so an error is returned
5	0 degC 0.00 degF	Converts temperature differential of 0 degC to degF

TConv function

Description

The **TConv** function converts a value from one temperature **scale** to another. This is distinguished from the **Conv** function, which is used to convert temperature differentials, but not temperature scales.

Syntax

TConvValue, Units, NewUnits)

The **TConv** function syntax has the following arguments:

- Value Value to convert
- Units Units for 'Value'
- **NewUnits** Units for the result

TConv accepts the following text values (in quotation marks or as cell references) for Units and NewUnits.

Temperature scale		
Celsius	degC	
Kelvin	К	
Fahrenheit	degF	
Rankine	degR	

- If the input data types are incorrect or the units do not exist, **TConv** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.

1	200 <mark> degC</mark> =TConv(C4,D4,D5)	Converts 200 degC to degR
2	0 degC 32.0 degF	Converts 0 degC to degF
3	298 K 76.7 degF	Converts 298 K to degF

PConv function

Description

The **PConv** function converts a value from one pressure **scale** to another. It works with pressure units that have gauge and ambient notation. This is different from the **Conv** function, which is used to convert pressure differentials or pressures on the same basis, but not between gauge and absolute pressures.

Syntax

PConv(Value, Units, NewUnits)

The **PConv** function syntax has the following arguments:

- Value Value to convert
- Units Units for Value
- NewUnits Units for the result

PConv accepts the following text values (in quotation marks or as cell references) for Units and NewUnits. Note that a 'g' or an 'a' can be added to any of these units to signify gauge or absolute pressure, respectively.

Pressure scale		
pascal *	Ра	
bar *	bar	
atmosphere	atm	
inch water	inH2O	
foot water	ftH2O	
meter water	mH2O	
millimeter mercury	mmHg	
centimeter mercury	cmHg	
inch mercury	inHg	
torr	torr	
kilogram per square centimeter	kg_cm2	
pound per square inch	psi	

Remarks

- Gauge pressures are based on the setpoint ambient pressure, which can be set through the ProcessUtilities user interface under the heading 'Std / Amb Conditions'. Default is 1 atm.
- If the input data types are incorrect or the units do not exist, **PConv** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.

Example

ConvFactor function

Description

The **ConvFactor** function returns the value of a conversion factor, i.e. 'gal/ft3'.

Syntax

ConvFactor (UnitRatio)

The **ConvFactor** function syntax has the following argument:

• Value A ratio of two units that have the same dimensions

Example

1	=ConvFactor(D4)	gal/ft3	Calculates the equivalent of 1 ft3 in gallons
2	44.70	(cm/s)/mph	Calculates the equivalent of 1 mph in 'cm/s'

BaseUnits function

Description

The **BaseUnits** function returns the metric base units of a unit string.

Syntax

BaseUnits (Units)

The **BaseUnits** function syntax has the following arguments:

• Units The unit string to be simplified.

BaseUnits returns the following unit symbols for each dimension.

Dimension	Unit	Symbol
Time	second	S
Length	meter	m
Mass	kilogram	kg
Electric current	ampere	A
Temperature	kelvin	К
Luminous intensity	candela	cd
Amount of substance	mole	mol

- See entry for the **Conv** function regarding acceptable units arguments.
- If the input data types are incorrect or the units do not exist, **BaseUnits** returns the #VALUE! error value.

1	Units BaseUnits	gpm =BaseUnits(D4)	
2	Units BaseUnits	Btu m2-kg/s2	
3	Units BaseUnits	ft3-psi/(lbmol-degF) m2-kg/(mol-K-s2)	

UnitMath function

Description

The **UnitMath** function returns the product of one to six unit strings, raised to the specified exponents and simplified.

Syntax

UnitMath(Units1, Exponent1, Units2, Exponent2, Units3, Exponent3, ...)

The **UnitMath** function syntax has the following arguments:

- Units1 First unit string
- **Exponent1** Exponent for Units1
- Units2 First unit string
- **Exponent2** Exponent for Units2
- Units3 First unit string
- **Exponent3** Exponent for Units3
- ...

- See entry for the **Conv** function regarding acceptable units arguments.
- If the input data types are incorrect or the units do not exist, **UnitMath** returns the #VALUE! error value.
- Division of unit strings can be performed by specifying negative exponents.
- UnitMath can accept up to six string/exponent pairs as arguments.

	-		
1	Units/Exponent 1	m2	1
	Units/Exponent 2	m/s	1
	Result	=UnitMath(D4,E4,D5,E5)	
		· · · · · · · · · · · · · · · · · · ·	-
2	Units/Exponent 1	gal	1
	Units/Exponent 2	gal/s	-1
	Result	S	
3	Units/Exponent 1	mol	1
	Units/Exponent 2	L-atm/(mol-K)	1
	Units/Exponent 3	K	1
	Units/Exponent 4	atm	-1
	Result	L	

Dimensionless function

Description

The **Dimensionless** Function uses dimensional analysis to construct and calculate the value of a dimensionless number based on the arguments specified. Value/unit pairs can be entered in any order, given that all numerator value/unit pairs are entered before all denominator pairs.

Syntax

Dimensionless(Value1, Units1, Value2, Units2, Value3, Units3, ...)

The **Dimensionless** function syntax has the following arguments:

- Value1 First parameter value
- Units1 First parameter units
- Value2 Second parameter value
- Units2 Second parameter units
- Value3 Third parameter value
- Units3 Third parameter units
- ...

- See entry for the **Conv** function regarding acceptable units arguments.
- If the input data types are incorrect, the units do not exist, or a dimensionless number cannot be constructed from the arguments, **Dimensionless** returns the #VALUE! error value.
- Dimensionless numbers that can be calculated include Re, Pr, Nu, Sh, Ma, Sc, Fo, La, Kn, and others.
- Dimensionless can accept up to six value/units pairs as arguments.

1	Density	1.45	g/cm3
	Velocity	55.0	ft/min
	Inner diameter	0.80	in
	Viscosity	1.10	cP
	Reyonlds number	=Dimensionless(D4,E4,D5,E5,D6,E6,D7,E7)	

2	Velocity Inner diameter Viscosity Reyonlds number	55.0 0.80 0.76 7,480	ft/min in cSt
3	Heat trans. coefficient Characteristic length Thermal conductivity Nusselt number	4.50 1.25 10.0 3.19	Btu/(ft2-h-degF) m W/m/K

Dimensional function

Description

Uses dimensional analysis to construct and calculate a result with the specified units. Value/unit pairs can be entered in any order, given that all numerator value/unit pairs are entered before all denominator pairs.

Syntax

Dimensional(Result units, Value1, Units1, Value2, Units2, Value3, Units3, ...)

The **Dimensional** function syntax has the following arguments:

- **Result units** Units for the result
- Value1 First parameter value
- Units1 First parameter units
- Value2 Second parameter value
- Units2 Second parameter units
- Value3 Third parameter value
- Units3 Third parameter units
- ...

- See entry for the **Conv** function regarding acceptable units arguments.
- If the input data types are incorrect, the units do not exist, or a number with the specified dimensions cannot be constructed from the arguments, **Dimensionless** returns the #VALUE! error value.
- Dimensionless can accept up to six value/units pairs as arguments.
- Only multiplication and division operations are supported.
- Values with the units 'degC' and 'degF' are considered as temperature differentials. Units of 'K' or 'degR' should be used where absolute temperature is needed.

1 Heat trans. coefficient	4.50	Btu/(ft2-h-degF)
LMTD	25.0	degC
Heat transfer area	12.0	m2
Heat transfer rate	=Dimensional(E7,D4,E4,D5,E5,D6,E6)	w

2	Length	55.0 ft
	Width	0.80 m
	Height	2.00 in
	Volume	180 gal
3	Flow rate	22.0 scfm
	Ideal gas constant	8.31 J/mol/K
	Characteristic length	80.0 degF
	Pressure	150 psi
	Volume rate	505.0 ft3/d

MassMolesVolume function

Description

Converts between moles/standard volume, mass, volume, density, molecular weight, mole volume, and mole density.

$$V_m = \frac{V}{n} = \frac{m}{\rho \cdot n} = \frac{MW \cdot V}{m} = \frac{MW}{\rho}$$

where

V _m	molar volume	MW	molecular weight.
V	volume or volume rate	n	moles or mole rate
m	mass or mass rate	ρ	mass density

Syntax

MassMolesVolume(Formula, Value, Units, NewUnits)

The **MassMolesVolume** function syntax has the following arguments:

- Formula Chemical formula
- Value Value to convert
- Units Units for Value
- **NewUnits** Units for the result

MassMolesVolume accepts any chemical formula that meets the requirements described under the section for the **MW** function. It will likewise accept any combination of units as described under the section for the **CONV** function, as long as the dimensions of Units/NewUnits can be simplified to Mass/Quantity or Quantity/Mass.

- If the input data types are incorrect or the units do not exist, **MassMolesVolume** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.

1	Standard volume rate Molecular weight Mass density Actual volume rate	18.4 32.0 2.1 =MassMolesVolume(E7,D4,E4,D5,E5,D6,E6)	scfh Ib/Ibmol kg/m3 m3/d	Calculates the actual volume rate equivalent to 18.4 scfh
2	Mass Molecular weight Moles	5.00 134 16.9	lb g/mol mol	Calculates the number of moles in 5 lb of a substance with a molecular weight of 134 g/mol
3	Volume Mass density Molecular weight Moles	25.4 0.92 48 1,843	gal g/cm3 g/mol mol	Calculates the number of moles in 25.4 gal of a substance with a molecular weight of 48 and a density of 0.92

IdealGas function

Description

The **IdealGas** function uses up to five specified parameters in the ideal gas equation to calculate the parameter with the result units specified:

	$V = \frac{RT}{V}$	т	$_{MW}$ ·	V _ MW
	$V_m = \frac{1}{p} = \frac{1}{n} = \frac{1}{n}$	$\overline{\rho \cdot n}$	m	$=$ $-\rho$
V _m	molar volume		R	ideal gas constant
Т	temperature		р	pressure
V	volume or volume rate		n	moles or mole rate
m	mass or mass rate		ρ	mass density
MW	molecular weight.			

Syntax

IdealGas(ResultUnits, Value1, Units1, Value2, Units2, ..., Value5, Units5)

The **IdealGas** function works with any dimensionally consistent combination of the following parameters:

- Moles / Mole rate Amount of gas in units of moles (rate) or standard volume (rate)
- Volume / Volume rate Volume of gas
- Mass / Mass rate Mass of gas
- Temperature Temperature of gas
- Pressure Pressure
- Molecular weight Molecular weight
- Molar volume Molar volume in units of volume per mole (or std volume)
- Mass density Mass density in units of mass per volume
- Molar density Molar density in units of moles per volume

Parameters can be entered in any order, as long as ResultUnits is specified first and units are specified after their corresponding values.

- If the input data types are incorrect or the units do not exist, **IdealGas** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.

1 Stand Temp Press	Standard volume rate	10	scfm	Calculates the actual volume rate equivalent to 10 scfm of
	Temperature	100.0	degC	an ideal gas at 100degC and 15 psig
	Pressure	15	psig	
	Actual volume rate	=IdealGas(E7,D4,E4,D5,E5,D6,E6)	m3/d	
2	Temperature	325	к	Calculates the mass density of an ideal gas with an MW of
	Pressure	5.2	bar	14 g/mol at 325K and 5.2 bar
	Molecular weight	14	g/mol	
	Mass density	2.69	kg/m3	
			-	
3	Standard volume rate	18.4	scfh	Calculates the actual volume rate equivalent to 18.4 scfh
	Molecular weight	32.0	lb/lbmol	
	Density	2.1	kg/m3	
	Actual volume rate	8.50	m3/d	
4	Mass	5.00	lb	Calculates the number of moles in 5 lb of a substance with
	Molecular weight	134	g/mol	a molecular weight of 134 g/mol
	Moles	16.9	9 mol	

MW function

Description

Returns the molecular weight of the compound with the specified molecular formula. Units other than "g/mol" can be specified optionally.

Syntax

MW(Formula, [Units])

The **MW** function syntax has the following arguments:

- **Formula** Required. The molecular formula of the compound.
- Units Optional. The units for the molecular weight. Default is 'g/mol'.

Remarks

- If the input data types are incorrect, do not exist, or units are of the wrong dimensions, **MW** will return #VALUE! error.
- Formulas and prefixes are case-sensitive.
- Hydrate and similar formulas are acceptable, see example 3 below.
- See 'Remarks' section for **Conv** function regarding acceptable units arguments.
- Source: IUPAC

Example

1	Formula Molecular weight	Na2SO4 =MW(D4) g/mol	Returns the molecular weight of sodium sulfate in default units of g/mol
2	Formula	(CH3)3N	Returns the molecular weight of trimethylamine
	Molecular weight	130.32 lb/kmol	in lb/kmol
3	Formula	Na2SO4-10H2O	Returns the molecular weight of sodium sulfate
-	Molecular weight	ular weight 322.19 g/mol	decahydrate
4	Formula	EtOH	Returns the molecular weight of ethanol
-	Molecular weight	46.07 g/mol	

Atomic no.	Name	Symbol
1	Hydrogen	Н
2	Helium	He
3	Lithium	Li
4	Beryllium	Ве
5	Boron	В
6	Carbon	С
7	Nitrogen	N
8	Oxygen	0
9	Fluorine	F
10	Neon	Ne
11	Sodium	Na
12	Magnesium	Mg
13	Aluminum	Al
14	Silicon	Si
15	Phosphorus	Р
16	Sulfur	S
17	Chlorine	Cl
18	Argon	Ar
19	Potassium	К
20	Calcium	Са
21	Scandium	Sc
22	Titanium	Ti
23	Vanadium	V
24	Chromium	Cr
25	Manganese	Mn
26	Iron	Fe
27	Cobalt	Со
28	Nickel	Ni
29	Copper	Cu
30	Zinc	Zn
31	Gallium	Ga
32	Germanium	Ge
33	Arsenic	As
34	Selenium	Se
35	Bromine	Br
36	Krypton	Kr
37	Rubidium	Rb

Atomic no.	Name	Symbol
38	Strontium	Sr
39	Yttrium	Y
40	Zirconium	Zr
41	Niobium	Nb
42	Molybdenum	Мо
43	Technetium	Тс
44	Ruthenium	Ru
45	Rhodium	Rh
46	Palladium	Pd
47	Silver	Ag
48	Cadmium	Cd
49	Indium	In
50	Tin	Sn
51	Antimony	Sb
52	Tellurium	Те
53	lodine	I
54	Xenon	Xe
55	Cesium	Cs
56	Barium	Ва
57	Lanthanum	La
58	Cerium	Ce
59	Praseodymium	Pr
60	Neodymium	Nd
61	Promethium	Pm
62	Samarium	Sm
63	Europium	Eu
64	Gadolinium	Gd
65	Terbium	Tb
66	Dysprosium	Dy
67	Holmium	Но
68	Erbium	Er
69	Thulium	Tm
70	Ytterbium	Yb
71	Lutetium	Lu
72	Hafnium	Hf
73	Tantalum	Та
74	Tungsten	W

MW accepts the following text values (in quotation marks or as cell references) for formula. Atomic no. Name Symbol Atomic no. Name Symbol

Atomic no.	Name	Symbol
75	Rhenium	Re
76	Osmium	Os
77	Iridium	lr
78	Platinum	Pt
79	Gold	Au
80	Mercury	Hg
81	Thallium	TI
82	Lead	Pb
83	Bismuth	Ві
84	Polonium	Ро
85	Astatine	At
86	Radon	Rn
87	Francium	Fr
88	Radium	Ra
89	Actinium	Ac
90	Thorium	Th
91	Protactinium	Ра
92	Uranium	U
93	Neptunium	Np
94	Plutonium	Pu
95	Americium	Am
96	Curium	Cm
97	Berkelium	Bk
98	Californium	Cf
99	Einsteinium	Es
100	Fermium	Fm
101	Mendelevium	Md
102	Nobelium	No
103	Lawrencium	Lr
104	Rutherfordium	Rf
105	Dubnium	Db

Atomic no.	Name	Symbol
106	Seaborgium	Sg
107	Bohrium	Bh
108	Hassium	Hs
109	Meitnerium	Mt
110	Darmstadtium	Ds
111	Roentgenium	Rg
112	Copernicium	Cn
113	Ununtrium	Uut
114	Flerovium	Fl
115	Ununpentium	Uup
116	Livermorium	Lv
117	Ununseptium	Uus
118	Ununoctium	Uuo

Organic group symbols:

Name	Symbol	Formula
Acetyl	AC	C2H3O
Benzoyl	Bz	C6H5CO
Benzyl	Bn	C6H5C2
Butyl	Bu	C4H9
Cyclopentadienyl	Ср	C5H5
Cyclohexyl	Су	C6H11
Ethyl	Et	C2H5
Methyl	Me	CH3
Mesyl	Ms	CH3SO2
Phenyl	Ph	C6H5
Propyl	Pr	C3H7
Triflyl	Tf	F3CSO2
Trityl	Tr	Ph3C
Tosyl	Ts	CH3C6H4SO2

CountAtom function

Description

Returns the number of atoms of the specified element in a compound of the specified molecular formula or set of formulas.

Syntax

CountAtom(Symbol, Formula(s), [Coefficients])

The **CountAtom** function syntax has the following arguments:

- **Symbol(s)** Required. Symbol for the element to be counted.
- Formula(s) Required. Molecular formula of the compound, or a range containing multiple formulas.
- **Coefficient(s)** Optional. Coefficients corresponding to Formula(s)

CountAtom accepts them same symbols as arguments as the MW function.

- If the input data types are incorrect or do not exist, **CountAtom** will return #VALUE! error.
- Formulas and prefixes are case-sensitive.
- Hydrate and similar formulas are allowed, i.e. "Na2SO4-10H2O".

1	Element	Na	Returns the number of sodium atoms in one
	Formula	Na2SO4	molecule of sodum sulfate
	Count	=CountAtom(D4,D5)	
	·		
2	Element	0	Returns the number of oxygen atoms in
	Formula	Na2SO4-10H2O	sodium sulfate decahydrate
	Count	14	•

1	2	3	4
Liquid in	Gas in	Liquid out	Gas out
2.63E-02	1.69E-02 2.63E-02		1.67E-02
2.63E-02		2.60E-02	
		3.54E-04	
2.43E-05		2.43E-05	
	3.54E-03		3.37E-03
	1.33E-02		1.33E-02
	Liquid in 2.63E-02 2.63E-02 2.43E-05	Liquid in Gas in 2.63E-02 1.69E-02 2.63E-02 2.43E-05 3.54E-03 1.33E-02	Liquid in Gas in Liquid out 2.63E-02 1.69E-02 2.63E-02 2.63E-02 2.60E-02 3.54E-04 2.43E-05 2.43E-05 3.54E-03 1.33E-02

H 5.27E-02 0.00E+00 -5.27E-02 0.00E+00 O 2.64E-02 7.08E-03 -2.68E-02 -6.73E-03 N 0.00E+00 2.67E-02 0.00E+00 -2.67E-02 S 2.43E-05 0.00E+00 -2.43E-05 =-CountAtom					
O 2.64E-02 7.08E-03 -2.68E-02 -6.73E-03 N 0.00E+00 2.67E-02 0.00E+00 -2.67E-02 S 2.43E-05 0.00E+00 -2.43E-05 =-CountAtom	Н	5.27E-02	0.00E+00	-5.27E-02	0.00E+00
N 0.00E+00 2.67E-02 0.00E+00 -2.67E-02 S 2.43E-05 0.00E+00 -2.43E-05 =-CountAtom	0	2.64E-02	7.08E-03	-2.68E-02	-6.73E-03
S 2.43E-05 0.00E+00 -2.43E-05 =-CountAtom	_ N	0.00E+00	2.67E-02	0.00E+00	-2.67E-02
	S	2.43E-05	0.00E+00	-2.43E-05 =	-CountAtom

Balance check	(5	
Mass	0.00E+00	Check
н	0.00E+00	Check
0	0.00E+00	Check
N	0.00E+00	Check
S	0.00E+00	Check

MassToMoleComposition function

Description

MassToMoleComposition is an array function that converts a composition from mass fraction to mole fraction. Array functions produce an array of multiple cells as a result and

Syntax

MassToMoleComposition(Formulas, Mass fractions)

The **MassToMoleComposition** function syntax has the following arguments:

- Formulas A range of molecular formulas.
- Mass fractions A range of mass fractions corresponding to Formulas.

- If the input data types are incorrect or do not exist, **MassToMoleComposition** will return #VALUE! error.
- Array formulas need to be entered differently than normal formulas. The steps are:
 - Select the range of cells that the result values will occupy. (See Example 1 below.)
 - Type in the formula.
 - Hold Control and Shift, and then press Enter.
 - Check out Microsoft's online resources for more information.

1	Species	Mass fraction	Mole fraction
1	CO2	25.0%	=MassToMoleComposition(C4:C8,D4:D8)
	CH4	54.0%	
	H2S	1.5%	
	H2O	16.0%	
	N2	3.5%	

2	Species	Mass fraction	Mole fraction	
	N2	7.81E-01	8.04E-01	
	02	2.09E-01	1.89E-01	
	Ar	9.34E-03	6.75E-03	
	CO2	4.00E-04	2.62E-04	
	Ne	1.82E-05	2.60E-05	
	He	5.24E-06	3.78E-05	
	CH4	1.79E-06	3.22E-06	
MoleToMassComposition function

Description

MoleToMassComposition is an array function that converts a composition from mole fraction to mass fraction. Array functions produce an array of multiple cells as a result and

Syntax

MoleToMassComposition(Formulas, Mole fractions)

The **MoleToMassComposition** function syntax has the following arguments:

- Formulas A range of molecular formulas.
- **Mole fractions** A range of mole fractions corresponding to Formulas.

- If the input data types are incorrect or do not exist, **MoleToMassComposition** will return #VALUE! error.
- Array formulas need to be entered differently than normal formulas. The steps are:
 - Select the range of cells that the result values will occupy. (See Example 1 below.)
 - Type in the formula.
 - Hold Control and Shift, and then press Enter.
 - Check out Microsoft's online resources for more information.

1	Species	Mole fraction	Mass fraction
	CO2	11.4%	=MoleToMassComposition(C4:C8,D4:D8)
	CH4	67.4%	
	H2S	0.9%	
	H2O	17.8%	
	N2	2.5%	
			-
2	Species	Mass fraction	Mass fraction
	N/2	9.04E.01	7 915 01

N2	8.04E-01	7.81E-01
02	1.89E-01	2.09E-01
Ar	6.75E-03	9.34E-03
CO2	2.62E-04	4.00E-04
Ne	2.60E-05	1.82E-05
Не	3.78E-05	5.24E-06
CH4	3.22E-06	1.79E-06

Constant function

Description

The **Constant** function returns the value of a specified physical constant in the units specified.

Syntax

Constant(Symbol, Units)

The **Constant** function syntax has the following arguments:

- Symbol Symbol or name of the constant
- Units Units for the constant

Constant accepts the following text values (in quotation marks or as a cell reference) for symbol, and requires text values for units to be of the following dimensions.

NAME	SYMBOL	VALUE	UNIT DIMENSIONS
Molar gas constant	R	8.3144321	J/(mol-K)
Faraday constant	F	96,485	C/mol
Avogadro's number	Na	6.022 E23	1/mol
Acceleration due to gravity	g	9.80665	m/s2
Newtonian constant of gravitation	G	6.67384 E-11	m3/(kg-s2)
Speed of light	С	2.99776 E8	m/s
Boltzmann constant	k	1.38065 E-23	J/K
Plank constant	h	6.62607 E-34	J-s
Elementary charge	e	1.602176565 E-19	С
Electron mass	me	9.10938291 E-31	kg
Proton mass	mp	1.672621777 E-27	kg

Remarks

- If the input data types are incorrect, do not exist, or units are of the wrong dimensions, **Constant** will return #VALUE! error.
- Unit names and prefixes are case-sensitive.
- See 'Remarks' section of **Conv** function regarding acceptable units arguments.

Example

1	R	=Constant(C4,E4)	J/(mol-K)	Returns the ideal gas constant in J/(mol-K)
2	g	115,827	7 ft/min2	Returns the acceleration due to gravity in ft/min2
3	Faraday constant	96,485	5 A/(mol/s)	Returns the Faraday Constant in A/(mol/s)
4	R	#VALUE!	J/mol-K	Returns an error because the dimensions are wrong

STP function

Description

The **STP** function returns the value of temperature, pressure, ideal molar volume, or ideal molar density at standard conditions, based on the units specified. Standard temperature and pressure can be set through the ProcessUtilities user interface. Default is 0 degC and 1 atm.

Syntax

STP(Units)

The **STP** function syntax has the following arguments:

• **Units** Required. The desired units for the result.

- If the input data types are incorrect or the units do not exist, **STP** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.

1	Std. temperature	=STP(E4) degF	Returns the standard temperature setpoint in degF
2	Std. pressure	0.00 psig	Returns the standard pressure setpoint in psig
3	Molar volume	359 ft3/lbmol	Returns the ideal gas molar volume at setpoint STP

SaturatedSteam function

Description

The **SaturatedSteam** function returns temperature, pressure, specific volume, internal energy, enthalpy, or entropy for saturated steam, based any other of these properties.

Syntax

SaturatedSteam(Input property name, Input value, Input Units, Result property name, Result units)

The **SaturatedSteam** function syntax has the following arguments:

- Input property name Name of the input property (see below for options)
- Input value Value of the input property
- Input units Units for Input value
- **Result property name** Name of result property (see below for options)
- **Result units** Units for the result

SaturatedSteam accepts the following case-insensitive text values (in quotation marks or as cell references) for Input property name and Result property name.

Property	Symbol; Dimensions
Temperature	"T", temperature
Pressure	"P", pressure
Specific volume	"vf", "vg"; volume/mass
Internal energy	"uf", "ug*"; energy/mass
Enthalpy	"hf", "hfg", "hg*"; energy/mass
Entropy	"sf", "sfg", "sg"; energy/(mass*temperature)

- Gas internal energy "ug" and gas enthalpy "hg" are acceptable as result property names but not input property names.
- If the input data types or units are incorrect, **SaturatedSteam** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.
- In the property names, a suffix of 'f' indicates the liquid phase, 'g' indicates the gas phase, and 'fg' indicates the difference between the liquid and gas phases.
- Source: NIST

1	Т	150	degC
	Р	=SaturatedSteam(C4,D4,E4,C5,E5)	psia
2	Р	6.50	bar
	hf	294.3	Btu/lb
3	vg	1,215	cm3/g
	т	229.7	degF

SuperheatedSteam function

Description

Returns specific volume, internal energy, enthalpy, or entropy for superheated steam, based on temperature and pressure.

Syntax

SuperheatedSteam(Temperature, Temperature units, Pressure, Pressure units, Result property name, Result units)

The **SuperheatedSteam** function syntax has the following arguments:

- Temperature Temperature value
- Temperature units Units for Temperature
- Pressure Pressure value
- **Pressure units** Units for Pressure
- **Result property name** Name of result property (see below for options)
- **Result units** Units for the result

SuperheatedSteam accepts the following case-insensitive text values (in quotation marks) for Result Property Name.

Property	Symbol; Dimensions
Specific volume	"v"; volume/mass
Internal energy	"u"; energy/mass
Enthalpy	"h"; energy/mass
Entropy	"s"; energy/(mass*temperature)

- If the input data types or units are incorrect, **SuperheatedSteam** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.
- If the temperature and pressure specified does not correspond to steam in a superheated state, or is out of the range of the database, **SuperheatedSteam** will return a #VALUE! error.
- Source: NIST

1	Temperature Pressure u	150.0 1 =SuperheatedSteam(D4,E4,D5,E5,C6,E6)	degC atm kJ/kg	
2	Temperature Pressure v	350 10 144.5	degF psig gal/lb	
3	Temperature Pressure h	1050 112 4,102	K psig kJ/kg	

Z function

Description

The **Z** function returns the compressibility factor for a gas based on reduced temperature and pressure.

Syntax

Z(Reduced temperature, Reduced pressure)

The **Z** function syntax has the following arguments:

- **Reduced temperature** Reduced temperature (actual divided by critical temperature)
- Reduced pressure
 Reduced pressure (actual divided by critical pressure)

- Based on linear interpolation of the Nelson-Obert Generalized Compressibility Charts. Accuracy of charts is reported to be 1-2% for **Z** values greater than 0.6, and 4-6% for Z values 0.3-0.6. Strongly polar gases may have more error. Unit names and prefixes are case-sensitive.
- For most gases, reduced pressure is defined as actual temperature divided by critical temperature, and reduced pressure is defined as actual pressure divided by critical pressure.
- For the gases hydrogen, helium, and neon, reduced temperature is defined as $Tr = T/(T_c+8)$, and reduced pressure is defined as $Pr = P/(P_c+8)$.
- If the reduced temperature or reduced pressure specified are outside the range of the charts, Z will return a #VALUE! error.

Standard volume-to-actual volume calculator					
Temperature	-15.0	degC	Critical temperature	-146.9	degC
Pressure	10,140	psig	Critical pressure	33.5	atm
Standard volume rate	150.0	scfh			
Actual volume rate	0.343	ft3/h			
Calculations					
Temperature	258.2	К	Gen. compressibility factor	=Z(C17,C21)	-
Critical temperature	126.3	к	Ideal volume	0.205	ft3/h
Reduced temperature	2.045	-	Real gas volume	0.343	ft3/h
Pressure	70,014	kPa			
Critical pressure	3,394	kPa			
Reduced pressure	20.626	-			

PipeSize function

Description

The **PipeSize** function returns the inner diameter, outer diameter or transverse inner area for an NPS pipe of the specified size and schedule.

Syntax

PipeSize(Pipe size, Dimension, Units)

The **PipeSize** function syntax has the following arguments:

- **Pipe size** Pipe size and schedule, in quotes or as a cell reference (see examples)
- **Dimension** Name of result dimension (ID, OD, A)
- Units Units for the result

- Pipe size should be entered as a string or cell reference including both NPS size and schedule, i.e. "1.5" Sch80", "0.5inch SCH40.
- If the input data types are incorrect or the units do not exist, **PipeSize** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.

1	Pipe size	1" Sch 40	l
	Outer diameter	=PipeSize(\$D\$4,C5,E5)	in
	Inner diameter	1.049	in
	Area	5.576	cm2
	Wall thickness	3.378	mm
2	Pipe size	3.5in Sch80	
	OD	0.333	ft
	ID	3.364	in
	Α	6.17E-02	ft2
	t	8.08E-03	m

Roughness function

Description

The **Roughness** function returns the absolute surface roughness of the specified material, for use in pressure drop calculations.

Syntax

Roughness(Material, Units)

The **Roughness** function syntax has the following arguments:

- Material Material name (see options below)
- Units Units for the result in dimensions of length

Roughness accepts the following case case-insensitive text values for fitting type.

Materials		
Drawn tubing (brass, lead, glass, steel, etc.)	Galvanized iron	
Plastic pipe	Cast iron	
Commercial steel	Wood stove	
Wrought iron	Concrete	
Asphalted cast iron	Riveted steel	

- If the input data types or units are incorrect, **Roughness** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.
- Data source: Perry's 6-10, GPSA Handbook

1	Material Roughness	Drawn tubing =Roughness(D4,E5)	in
	······		••••••••••••••••••••••••••••••••••••••
2	Roughness	Plastic pipe 1.50E-03	mm
3	Material	Commercial steel	
	Roughness	1.50E-04	ft

EquivalentLength function

Description

The **EquivalentLength** function returns the length of pipe that would produce an equivalent pressure drop to various standard pipe fittings.

Syntax

EquivalentLength(Fitting type, Diameter, Diameter units, Length/result units)

The **EquivalentLength** function syntax has the following arguments:

- Fitting type Fitting type. See below for options
- **Diameter** Inner diameter of fitting pipe size
- **Diameter units** Units for Diameter
- Length units Units for the result in dimensions of length

EquivalentLength accepts the following case-insensitive text values for fitting type.

Fitting type	Notes
Ball valve, small	Reduced bore, 1.5" and smaller
Ball valve, large	reduced bore, 2" and larger
Gate valve	standard bore
Gate valve, reduced bore	
Globe valve	Straight pattern
Globe valve, Y	Y pattern
Globe valve, angle	Angle pattern
Check valve, swing	
Check valve, ball	1.5" and smaller
Check valve, piston	1.5" and smaller
Plug valve	
Butterfly valve	6" and larger
Tee, straight	
Tee, branch	
Elbow, 90	R = 1.5D
Elbow, 45	R = 1.5D
Bend, 90, 4D	R = 4D
Bend, 45, 5D	R = 5D
Bend, 90, 4D	R = 4D
Bend, 45, 5D	R = 5D
Strainer	Pump suction Y type and bucket type
Nozzle	Suction nozzle vessel/tank

- If the input data types or units are incorrect, **EquivalentLength** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.
- Data source: GPSA handbook

	Inner diameter	1.125	in
1	Fitting	Globe valve	
	Equivalent length	=EquivalentLength(D6,\$D\$4,\$E\$4,E7)	ft
2	Fitting	Elbow, 90	
	Equivalent length	22.50	in
3	Fitting	Strainer	
	Equivalent length	7.14	m

* All formulas are constructed similarly to first example.

** See also 'Pressure drop calculator' sheet

PressureDrop function

Description

Uses the Darcy-Weisbach equation to calculate head loss or pressure drop due to friction.

$$h_f = f \cdot \frac{L}{D} \cdot \frac{u^2}{2g}$$

$$f = \frac{64}{Re}$$
, for laminar flow

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\varepsilon}{3.7D} + \frac{2.51}{Re\sqrt{f}}\right), for turbulent flow$$

h _f	frictional head loss	f	friction factor
L	length	D	inner diameter
u	velocity	g	acceleration of gravity
Re	Reynolds number	3	absolute roughness

Syntax

where

PressureDrop(Units, Diameter, Diameter units, Length, Length Units, Roughness, Roughness units, Flow rate, Flow rate units, Viscosity, Viscosity units, Density, Density units)

The **PressureDrop** function syntax has the following arguments:

- Unit Pressure drop or head units for result
- Diameter Inner diameter of pipe
- Diameter units Units for diameter
- Length Length of pipe
- Length units Units for length
- Roughness Absolute roughness of the pipe material (see ROUGHNESS function)
- Roughness units Units for roughness
- Flow rate Volume or mass flow rate, or velocity
- Flow rate units Units for flow rate
- Viscosity Kinematic or dynamic viscosity of the fluid
- Viscosity units Units for viscosity
- Density Density of the fluid
- Density units Units for density

Remarks

- If the input data types or units are incorrect, **PressureDrop** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.

Example

1	Inner diameter	1.125	in
	Length	20.0	ft
	Roughness	1.50E-04	ft
	Flow rate	15.0	gpm
	Viscosity	1.01	сP
	Density	985	kg/m3
	Pressure drop	=PressureDrop(E9,D3,E3,D4,E4,D5,E5,D6,E6,D7,E7,D8,E8)	inH2O
2	Inner diameter	1.125	in
	Length	1.2	mi
	-	4 505 04	· · ·

Roughness	1.50E-04 ft
Velocity	55.0 ft/min
Viscosity	1.01 cP
Density	985 kg/m3
Pressure drop	13.24 psi

3	Inner diameter	1.125	in
	Length	20.0	ft
	Roughness	1.50E-04	ft
	Mass flow rate	950.0	kg/s
	Viscosity	1.50	cSt
	Density	985	kg/m3
	Pressure drop	11.58	inH2O

FlowRegime function

Description

Returns the flow regime of liquid flowing in a pipe based on the Reynolds number, either laminar, transition, or turbulent. Flow is considered to be in the laminar regime below a Reynolds number of 2320, transition regime between 2320 and 4000, and turbulent regime above 4000.

Syntax

FlowRegime(Reynolds number)

Remarks

• If the input data types are incorrect, or the equation specified has no real roots, **FlowRegime** returns the #VALUE! error value.

Example

1	Inner diameter	3.50 in
	Velocity	8.20 ft/min
	Density	1.20 g/cm3
	Viscosity	1.01 cP
	Reynolds number	4,400
	Flow regime	=FlowRegime(D8)

PipeFlow function

Description

Converts between flow rate and velocity in a pipe.

$$\dot{V} = \frac{\pi d^2}{4} \cdot v$$

where

V volume flow rate d diameter v velocity

Syntax

To convert volume rate to velocity:

PipeFlow(Velocity units, Diameter, Diameter units, Volume flow rate, Volume rate units)

To convert velocity to volume rate :

PipeFlow(Volume rate units, Diameter, Diameter units, Velocity, Velocity units)

Remarks

- If the input data types or units are incorrect, **PipeFlow** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.

Example

1	Inner diameter	0.125	in	
	Flow rate	250	mL/min	[
	Velocity	=PipeFlow(E6,D4,E4,D5,E5)	cm/s	Í.
				•
2	Inner diameter	3.50	in	
	Velocity	100	gpm	
	Valacity	200.1	ft/min	

HeadPressure function

Description

Converts between pressure and head, according to the equation:

 $p = \rho \cdot g \cdot h_f$

where p is pressure, p is density, g is gravitational acceleration, and h_f is head.

Syntax

To calculate head:

HeadPressure(Units, Density, DensityUnits, Pressure, PressureUnits)

To calculate pressure:

HeadPressure(Units, Density, DensityUnits, Head, HeadUnits)

The **HeadPressure** function syntax has the following arguments:

- Units Units for result
- Density Density of fluid •
- DensityUnits Units for density
- Pressure Fluid pressure
- Units for Pressure PressureUnits
- Head
 - Head HeadUnits Units for Head.

- If the input data types or units are incorrect, **HeadPressure** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.
- Gauge pressures are not acceptable arguments.
- Pressure and density value/unit pairs can be entered in either order.

1	Density Pressure Head	1010 50.0 =HeadPressure(E6,D4,E4,D5,E5)	kg/m3 psi ft	Calculates feet of head for a 1010 kg/m3 fluid at 50 psi
2	Density Head Pressure	6.0 12 0.85	lb/gal m bar	Calculates pressure in bar for a 6 lb/gal fluid with 12 m head

CvLiquid function

Description

Liquid flow coefficient calculator. Calculates whichever value is not specified of Cv, flow rate, pressure drop, or density, according to the equation:

$$\dot{V} = Constant \cdot C_v \sqrt{\frac{\Delta p}{SG}}$$

Syntax

To calculate Cv:

CvLiquid(Flow rate, Flow rate units, Pressure drop, Pressure drop units, Density, Density units)

To calculate pressure drop:

CvLiquid(Pressure drop units, Cv, Flow rate, Flow rate units, Density, Density units)

To calculate flow rate:

CvLiquid(Flow rate units, Cv, Pressure drop, Pressure drop units, Density, Density units)

- Value/unit argument pairs can be entered in any order, as long as the result units are specified first. If Cv is the result, then units do not need to be specified.
- If the input data types are incorrect, or the equation specified has no real roots, **CvLiquid** returns the #VALUE! error value.
- See documentation for the **Conv** function for acceptable unit arguments.

1	Volume rate	1.125	gpm	
	Pressure drop	2.5	bar	
	Density	0.85	g/cm3	
	Cv	=CvLiquid(D4,E4,D5,E5,D6,E6)		
2	Cv	22.5		
	Pressure drop	15.0	psi	
	Density	1.11	g/cm3	
	Volume rate	450.9	m3/d	
3	Mass rate	1,200	lb/h	
	Cv	0.54		
	Density	1.01	g/cm3	
	Pressure drop	45.0	ftH2O	
4	Volume rate	1.125	gpm	
	Cv	0.770		
	Pressure drop	12.50	kPa	
	Density	0.85	g/cm3	
	-		-	

CvGas_Subcritical function

Description

Gas flow coefficient calculator for subcritical flow (pressure ratio > 0.5). Calculates whichever value is not specified: Cv, standard flow rate/mole flow rate, or outlet pressure. See documentation for examples.

$$\dot{n} = C_v P_{in} Y \sqrt{\frac{x}{MW \cdot T_{in} \cdot Z}} = C_v P_{in} \left(1 - \frac{2x}{3}\right) \sqrt{\frac{x}{MW \cdot T_{in}}}$$
$$Y = 1 - \frac{x}{3F_K x_T} = 1 - \frac{2x}{3}$$

where

Cv	flow coefficient	P _{in}	inlet pressure
Y	expansion factor	n	mole flow rate
MW	molecular weight	T _{in}	inlet temperature
х	pressure drop ratio (Pout / Pin)		
Z	compressibility, set at 1		

F_k Ratio of specific heat ratios (k/kair), set at 1

 x_T critical pressure drop, set at 0.5

Syntax

To calculate Cv:

CvGas_Subcritical(Flow rate, Flow rate units, Inlet temperature, Inlet temperature units, Inlet pressure, Inlet pressure units, Outlet pressure, Outlet pressure units, MW, MW units)

To calculate standard volume or mole flow rate:

CvGas_Subcritical(Flow rate units, Cv, Inlet temperature, Inlet temperature units, Inlet pressure, Inlet pressure units, Outlet pressure, Outlet pressure units, MW, MW units)

To calculate outlet pressure:

CvGas_Subcritical(Outlet pressure units, Cv, Flow rate, Flow rate units, Inlet pressure, Inlet pressure units, Inlet temperature, Inlet temperature units, MW, MW units) The **CvGas_Subcritical** function syntax has the following arguments:

- Cv Flow coefficient
- Flow rate
- Flow rate units
- Inlet pressure
- Inlet pressure units
- Outlet pressure
- Outlet pressure units
- Inlet temperature
- Inlet temperature units
- MW
- MW units

Inlet temperature Units for inlet temperature

Units for outlet pressure

Units for inlet pressure

Mole flow rate or standard volume flow rate

Molecular weight of gas Units for MW

Units for flow rate

Inlet pressure

Outlet pressure

- Value/unit argument pairs can be entered in any order, as long as the result units are specified first. If Cv is the result, then units do not need to be specified.
- Solving for outlet pressure requires iteration and may be slower than some other functions.
- If the input data types are incorrect, or the equation specified has no real roots,
 CvGas_Subcritical returns the #VALUE! error value.
- See documentation for the **Conv** function for acceptable unit arguments.

1	Rate	120.0	scfm
	Inlet pressure	110.0	psi
	Outlet pressure	80.00	psi
	Inlet temperature	120.00	degF
	Molecular weight	28.97	g/mol
	Cv	=CvGas_Subcritical(D4,E4,D5,E5,D6,E6,D7,E7,D8,E8)	

2	Cv	21.50	
	Inlet pressure	25.0	psi
	Outlet pressure	22.00	psi
	Inlet temperature	290.00	К
	Molecular weight	16.04	g/mol
	Rate	38.17	lbmol/h

3	Cv	2.71	
	Inlet pressure	110.0	psi
	Rate	120.00	scfm
	Inlet temperature	120.00	degF
	Molecular weight	28.97	g/mol
	Outletpressure	79.95	psi

CvGas_Critical function

Description

Gas flow coefficient calculator for critical flow (pressure ratio < 0.5). Calculates whichever value is not specified: Cv, standard flow rate, or inlet pressure. See documentation for examples.

$$\dot{n} = C_{\nu}P_{in}Y_T \sqrt{\frac{x_T}{MW \cdot T_{in} \cdot Z}} = \frac{2}{3}C_{\nu}P_{in} \sqrt{\frac{1}{2 \cdot MW \cdot T_{in}}}$$
$$Y_T = 1 - \frac{1}{3F_K} = \frac{2}{3}$$

where

Cv	flow coefficient	P _{in}	inlet pressure
Υ _T	critical expansion factor	n	mole flow rate
MW	molecular weight	T _{in}	inlet temperature
Z	compressibility, set at 1		
F _k	Ratio of specific heat ratios (k/k	_{air}), set a	t 1
Χ _T	critical pressure drop, set at 0.5		

Syntax

To calculate Cv:

CvGas_Subcritical(Flow rate, Flow rate units, Inlet temperature, Inlet temperature units, Inlet pressure, Inlet pressure units, MW, MW units)

To calculate standard volume or mole flow rate:

CvGas_Subcritical(Flow rate units, Cv, Inlet temperature, Inlet temperature units, Inlet pressure, Inlet pressure units, MW, MW units)

To calculate inlet pressure:

CvGas_Subcritical(Inlet pressure units, Cv, Flow rate, Flow rate units, Inlet temperature, Inlet temperature units, MW, MW units) The **CvGas_Cricitical** function syntax has the following arguments:

- Cv Flow coefficient
- Flow rate Mole flow rate or standard volume flow rate
- Flow rate units
- Inlet pressure
- Inlet pressure units Units for inlet pressure
- Inlet temperature Inlet temperature
- Inlet temperature units Units for inlet temperature
- MW
- MW units

Molecular weight of gas

Units for flow rate

Inlet pressure

ts Units for MW

Remarks

- Value/unit argument pairs can be entered in any order, as long as the result units are specified first. If Cv is the result, then units do not need to be specified.
- If the input data types are incorrect, or the equation specified has no real roots, **CvGas_Cricitical** returns the #VALUE! error value.
- See documentation for the **Conv** function for acceptable unit arguments.

Example

1	Rate	120.0	scfm
	Inlet pressure	110.0	psi
	Inlet temperature	120.0	degF
	Molecular weight	28.97	g/mol
	Cv	=CvGas_Critical(D4,E4,D5,E5,D6,E6,D7,E7)	1

2	Cv	21.50	
	Inlet pressure	25.0	psi
	Inlet temperature	290.00	к
	Molecular weight	16.04	g/mol
	Rate	56.47	lbmol/h
3	Cv	2.46	

-			
	Rate	120.00	scfm
	Inlet temperature	120.00	degF
	Molecular weight	28.97	g/mol
	Inlet pressure	109.89	psi

PackedBedPressureDrop function

Description

Uses the Ergun Equation to estimate pressure drop through a packed bed.

$$f_p = \frac{150}{Gr_p} + 1.75$$

with
$$f_p = \frac{\Delta p}{L} \frac{D_p}{\rho v_s^2} \left(\frac{\epsilon^3}{1-\epsilon} \right)$$
 and $Gr_p = \frac{\rho v_s D_p}{(1-\epsilon)\mu}$

where

fp	friction factor	Vs	superficial velocity
Gr_{p}	modified Reynolds number	ρ	fluid density
Δр	pressure drop	e	void fraction
L	bed length/height	μ	dynamic viscosity
Dp	Particle spherical equivalent diameter		

Syntax

PackedBedPressureDrop(Pressure drop (result) units, Superficial velocity, Superficial velocity units, Mass density, Mass density units, Viscosity, Viscosity units, Length, Length units, Particle diameter, Particle diameter units, Void fraction)

The **PackedBedPressureDrop** function syntax has the following arguments:

- Pressure drop units
- Superficial velocity
- Superficial velocity units
- Mass density
- Mass density units
- Viscosity
- Viscosity units
- Length
- Length units
- Particle diameter
- Particle diameter units
- Void fraction

- Units for pressure drop (result)
 - Superficial velocity of fluid in bed
- Units for superficial velocity
- Mass density of fluid
- Units for mass density
 - Dynamic or kinematic viscosity of fluid
- Units for viscosity
- Length/height of packed bed
- Units for length
 - Equivalent spherical diameter of bed particles
 - Units for particle diameter
- ion Void fraction of bed

Remarks

• If the input data types are incorrect, or the equation specified has no real roots, **PackedBedPressureDrop** returns the #VALUE! error value.

Example

1	Superficial velocity	65	ft/min
	Density	1000	g/L
	Viscosity	1	сP
	Length	6	ft
	Particle diameter	0.25	in
	Void fraction	0.54	
	Pressure drop	=PackedBedPressureDrop(E10,D4,E4,D5,E5,D6,E6,D7,E7,D8,E8,D9)	psi

2	Superficial velocity	40	cm/s
	Density	0.85	g/cm3
	Viscosity	0.95	cSt
	Length	25	cm
	Particle diameter	2	mm
	Void fraction	0.54	
	Pressure drop	0.910	bar
PumpPower function

Description

Calculates pump fluid power based on any dimensionally consistent combination of volume flow rate, mass flow rate, density, differential head, and differential pressure.

 $P = \dot{V}\rho gh = \dot{V}\Delta p = \dot{m}gh$

where

PpowerVvolume flow ratehheadΔppressure dropρmass densitygacceleration of gravity

Syntax

PumpPower(Power units, Volume rate, Volume rate units, Head, Head units, Density, Density units)

PumpPower(Power units, Volume rate, Volume rate units, Pressure, Pressure units)

PumpPower(Power units, Mass rate, Mass rate units, Head, Head units)

Remarks

- If the input data types or units are incorrect, **PumpPower** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.

Example

1 Mass rate	25.000	lb/h
Head differential	80	ft
Fluid power	=PumpPower(E6,D4,E4,D5,E5)	hp
Efficiency	80%	
Shaft power	1.26	hp
2 Volume rate	125	gpm
Pressure differential	45	psi
Fluid power	3.28	hp
Efficiency	80%	
Shaft power	4.10	hp
3 Mass rate	150	t/d
Pressure differential	80	atm
Density	1.25	g/cm3
Fluid power	11.26	kW
Efficiency	80%	
Shaft power	14.07	kW
4 Volume rate	150	L/min
Head differential	450	m
Density	0.95	g/cm3
Fluid power	35,786	Btu/h
Efficiency	80%	
Shaft power	44,733	Btu/h

* All formulas are constructed similarly to first example.

CompressorPower function

Description

Calculates fluid power of compression or expansion based on suction pressure, discharge pressure, and either volume flow rate, or molar flow rate and suction temperature. Optionally, heat capacity ratio can also be specified.

$$P = p_1 \dot{V}_1 \left(\frac{k}{k-1}\right) \left[\left(\frac{p_2}{p_1}\right)^{\left(\frac{k-1}{k}\right)} - 1 \right] = \dot{n} R T_1 \left(\frac{k}{k-1}\right) \left[\left(\frac{p_2}{p_1}\right)^{\left(\frac{k-1}{k}\right)} - 1 \right]$$

`	V	inlet volume flow rate	n	mole flow rate
1	R	ideal gas constant	Т	inlet temperature
	p1	inlet pressure	p2	outlet pressure
	k	ratio of specific heats, C_p/C_v		

Syntax

Where

CompressorPower(Power units, Volume flow rate, Volume flow rate units, Inlet pressure, Inlet pressure units, Outlet pressure, Outlet pressure units, [Heat capacity ratio])

CompressorPower(Power units, Mole or standard flow rate, Mole or standard flow rate units, Inlet pressure, Inlet pressure units, Outlet pressure, Outlet pressure units, Inlet temperature, Inlet temperature units, [Heat capacity ratio])

Remarks

- Specifying the heat capacity ratio is optional. The default value is 1.4.
- If the input data types or units are incorrect, **CompressorPower** returns the #VALUE! error value.
- Unit names and prefixes are case-sensitive.

Example

1	Volume rate	1,200	m3/h
	Suction pressure	10	psig
	Discharge pressure	55	psig
	Fluid power	=CompressorPower(E7,D4,E4,D5,E5,D6,E6)	kW
	Efficiency	80%	
	Shaft power	85.7	kW
2	Std volume or mole rate	120	scfm
	Suction pressure	15	ftH2O
	Discharge pressure	35	ftH2O
	Suction temperature	150	degF
	Fluid power	9.1	hp
	Efficiency	80%	
	Shaft power	11.4	hp
3	Volume rate	1,200	m3/h
	Suction pressure	0	psig
	Discharge pressure	55	psig
	Heat capacity ratio	1.32	
	Fluid power	85.6	hp
	Efficiency	80%	
	Shaft power	107.1	hp
4	Std volume or mole rate	1,200	scfm
	Suction pressure	250	psig
	Discharge pressure	120	psig
	Suction temperature	15	degC
	Heat capacity ratio	1.12	
	Expansion fluid power	-39.5	kW
	Efficiency	80%	
	Expansion shaft power	-49.3	kW

* All formulas are constructed similarly to first example.

LMTD function

Description

Returns the log mean temperature difference used in heat transfer calculations.

$$LMTD = \frac{\Delta T_A - \Delta T_B}{\ln \frac{\Delta T_A}{\Delta T_B}}$$
$$\Delta T_A = T_{A,2} - T_{A,1}$$
$$\Delta T_B = T_{B,2} - T_{B,1}$$

Syntax

LMTD(Temperature A1, Temperature A2, Temperature B1, Temperature B2)

The LMTD function syntax has the following arguments:

- **Temperature A1** Temperature of Stream 1, on Side A.
- **Temperature A2** Temperature of Stream 2, on Side A.
- **Temperature B1** Temperature of Stream 1, on Side B.
- **Temperature B2** Temperature of Stream 2, on Side B.

Remarks

- Temperature units are assumed to be consistent.
- If the input data types incorrect, **LMTD** returns the #VALUE! error value.

Example

Heat transfer rate calculator	for a counter curren	it heat exchanger	
Heat transfer coefficient	10.5 Btu/(h-f	t2-degF) LMTD	193.2 degF
Heat transfer area	220 ft2	Heat transfer rate	401.6 MBtu/h
Fouling factor	0.90	Alternative formula:	401.6 MBtu/h
Stream temperatures			
Process in	150.0 degC	CW supply	
Process out	120.0 degC		
Cooling water supply	68.0 degF	Process in + ()	
Cooling water return	95.0 degF	(
			─────────────────────────────────────
Calculations			
Heat transfer coefficient	59.6 W/m2/K	LMTD =LMTC	D(C25,C24,C26,C23)K
Heat transfer area	20.4 m2	Heat transfer rate	117,628 W
Fouling factor	0.90		
Stream temperatures			
Process in	423.2 K		
Process out	393.2 K		
Cooling water supply	293.2 K		
Cooling water return	308.2 K		

QuadraticFormula function

Description

Uses the quadratic formula to find roots of quadratic equations of the form:

$$0 = ax^2 + bx + c$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Syntax

QuadraticFormula(a, b, c, [Root index])

The QUADRATIC function syntax has the following arguments:

- a Coefficient of the x^2 term.
- **b** Coefficient of the x^1 term.
- **c** Coefficient of the x^0 term.
- **Root index** Optional. Indicates which of up to two roots to return.

QuadraticFormula accepts the following case-insensitive text values (in quotation marks or as cell references) for Root index.

Root index	Description
r1	Returns the root that corresponds to (-b + sqrt(b2-4ac))/2a.
r2	Returns the root that corresponds to (-b - sqrt(b2-4ac))/2a.
pos, positive	If one positive and one negative root exist, returns the positive root, otherwise returns the #VALUE! error.
neg, negative	If one positive and one negative root exist, returns the negative root, otherwise returns the #VALUE! error.

Remarks

• If the input data types are incorrect, or the equation specified has no real roots, QuadraticFormula returns the #VALUE! error value.

Example

1	а	2.0		
	b	1.0	0 =	$ax^2 + bx + c$
	с	-2.0		
	Root index	r1	positive	
	x	0.781	=QuadraticForm	ula(\$D\$4, <mark>\$D\$</mark> 5,\$D\$6,E8)
	Root index	r2	negative	
	x	-1.281	-1.281	

* All formulas are constructed similarly to first example.

Ribbon interface & shortcuts

Description

The Ribbon menu gives the user access to ProcessUtilities' documentation file and several other operations.

Submenus and commands	;
Documentation	Opens this help file as a PDF file.
Std / Amb conditions	Opens window for setting custom values for standard pressure, standard temperature, and ambient pressure or elevation.
SigFigs settings	Allows the user to specify and apply rules for the number of significant figures used to display values in the spreadsheet.
Units formatting	Applies unit-style superscript formatting to selection.
Mol. formatting	Applies molecular formula-type formatting to selection.
Extract functions	Opens menu for extracting Process Utilities functions from the spreadsheet.
About	Displays licensing and other information about Process Utilities.
Donate	Links to Process Utilities donation page. You should try using this link!!
AutoConv shortcut	Automatically inserts a Conv function and cycles between Conv, TConv, & PConv.

Conditions Menu

Description

The Conditions menu allows the user to specify custom settings for standard pressure, standard temperature, elevation, and ambient Pressure. These are values that are used by Process Utilities functions to convert between standard volume and moles, and between ambient and gauge pressure.

🖳 Standard & Ambient Co	onditions	_		×
Set standard conditions: For use in calculations inv	olving stand	dard me	olar volumes.	
Standard pressure Standard temperature		i 0	atm ▼ degC ▼	
Set elevation or ambient p	pressure:		SUITAS	
Elevation		0	ft 💌	
	ок		Cancel	
	<u>ОК</u>		Cancel	

Either elevation or ambient pressure can be specified, but not both. The value that is not specified is calculated using the equation below, where Po is pressure at sea level, L is temperature lapse rate, h is elevation, To is temperature at sea level, g is Earth-surface gravitational acceleration, M is the molar mass of dry air, and R is the Universal Gas Constant.

$$p = p_0 \cdot \left(1 - \frac{L \cdot h}{T_0} \right)^{\frac{g \cdot M}{R \cdot L}}$$

Setpoints specified in the Conditions menu are stored by Excel as named ranges and will be saved along with the worksheet.

SigFigs settings menu

Description

The SigFigs menu allows the user to specify rules for how numbers are displayed in a spreadsheet. Note that these settings only change how values are displayed, and not the values themselves. Setpoints specified in the SigFigs menu are stored by Excel as named ranges and will be saved along with the worksheet.

You can choose to apply settings to either a selection or to the entire workbook. **The settings can be** applied to a selection anytime by pressing 'Ctrl + q'.

🖷 Significant figure settings	-		×
Apply rule-based number formatting to a selection or an entire	workshe	eet.	
Decimal / scientific format 3 式 Total number of significant figures			
5 🕂 Max digits left of decimal before switching to scientific n	otation		
5 🛃 Max decimal places before switching to scientific notation	n		
Percent format			
3 Total number of significant ligures			
2 🕂 Max decimal places			
Currency format 3 Total number of significant figures 1 Min decimal places 2 Max decimal places			
Apply to selection Apply to worksheet Save	C	ancel	

Decimal / scientific format

These settings apply to values that are formatted in decimal or scientific notation. These are some examples of how values would be formatted according to the settings shown in the screenshot above.

54.235	\rightarrow	54.2
0.000001235	\rightarrow	1.23E-07
43,234.342	\rightarrow	43,234
12,235,2123.3	\rightarrow	1.22E+07

Percent format

These settings apply to values that are formatted as percents. These are some examples of how values would be formatted according to the settings shown in the screenshot above.

1.023%	\rightarrow	1.02%
0.00123%	\rightarrow	0.00%
95%	\rightarrow	95.0%

Currency format

These settings apply to values that are formatted as currency. These are some examples of how values would be formatted according to the settings shown in the screenshot above.

\$1.023	\rightarrow	\$1.02
\$0.00123	\rightarrow	\$0.00
\$1,200	\rightarrow	\$1,200.0

Units formatting

Description

This command button applies units-style formatting to a selection – all numbers that follow letters are made superscript.

Examples

Unformatted	Formatted
W/m2/K	W/m²/K
ft3/s	ft ³ /s
kg-m2/s2	kg-m ² /s ²

Mol. formatting

Description

This command button applies molecular formula-style formatting to a selection – all numbers that follow letters are made subscript.

Examples

Unformatted	Formatted
H2O	H ₂ O
C6H6	C_6H_6
Na2SO4-10H2O	Na ₂ SO ₄ -10H ₂ O

Extract functions

Description

The Extract functions button opens the Process Utilities Export Tool. The Export Tool allows you to make a copy of your Excel file that will work without the ProcessUtilities add-in. It will save all necessary constants and conversion factors as named ranges in a new worksheet. This is useful when you want to share workbooks with people who might not have Process Utilities.

Extractable functions	
Conv	HeadPressure
TConv	PipeFlow
PConv	EquivalentLength
ConvFactor	Roughness
Dimensional	FlowRegime
Dimensionless	PipeSize
Constant	LMTD
STP	QuadraticFormula
MW	

AutoConv keyboard shortcut (Ctrl + j)

Description

This is a very useful shortcut which automatically inserts a **Conv** function. When 'Ctrl + j' is pressed, ProcessUtilities searches adjacent cells for a value/units pair. If it finds one, it will insert a **Conv** function below the cell containing the value. If no 'NewUnits' are specified to the right of this cell, then ProcessUtilities will insert the BaseUnits corresponding to the original units.

If the **AutoConv** shortcut is used on a cell that already contains a **Conv** function, then it will cycle this function from **Conv**, to **TConv**, to **PConv**, and back to **Conv**.

Examples